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Abstract 

For each bounded trajectory of a particle in an arbitrary central field of force there exists 
a uniformly rotating reference frame in which the trajectory is closed. This circumstance 
makes it meaningful to introduce a nonconserving analog of the Runge-Lenze vector and 
to extend the group-theoretical description of the Kepler problem to the general case. In 
this paper the classical generators obeying the O(4.2)-algebra Poisson-bracket relations 
are given for the mechanical three-dimensional problem with arbitrary centrally symmetri- 
cal potential. A quantization is proposed in which one replaces six classical observables 
selected among the group generators by the operators obeying the corresponding commu- 
tation relations instead of postulating the canonical commutation relations. 

1. Introduction 

In our previous paper t (Serebrennikov and Shabad, 1973) we considered 
bounded motion in a three-dimensional mechanical problem with arbitrary 
central field of force and built a set of generators of infinitesimal canonical 
transformations from the 0(4)  Lie algebra. 

Among innumerable ways to do so we chose the one that supplied the 
constructed algebraic quantities with meaningful dynamical information. Our 
treatment is based on the fact that each trajectory can be made to be closed by 
the transition to a uniformly rotating reference frame. In this frame a generalized 
Runge-Lenze vector is meaningful. It becomes uniformly rotating in the rest 
frame (we call it the "precession vector" here). Its nonconserving components,  
along with those of the angular momentum, form the 0(4)  Poisson-bracket 
Lie algebra. Similar results are achieved in the relativistic case, and for the 
SU(3) group (Serebrennikov, 1974; Serebrennikov and Shabad, 1976). 

In Section 2, after having rewritten from I some necessary results concern- 
ing the 0(4)  classical generators, we show how to choose six independent 

r Hereafter referred to as I. 
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observables associated with the 0(4) algebra [and with the wider 0(4.2) algebra 
given in Section 5] that parametrize the phase space. 

In Sections 3 and 4 we discuss and fulfill a quantization program which, 
unlike the canonical quantization scheme, makes use of the above six group- 
associated observables. Within this program one postulates the commutation 
relations among these basic observables as they are prescribed by their algebrai- 
cal meaning instead of posttflating the canonical commutation relations between 
the position and momentum variables. Since the classical energy is uniquely 
expressed in terms of the above variables [namely, in terms of the mutually 
commuting Casimir invariants of the SO(4) group and its subgroup SO(3)] a 
natural way arises to define the quantum Hamfltonian in agreement with the 
correspondence principle and the requirement that in the Coulomb case its 
spectrum should exactly coincide with the usual hydrogen atom spectrum. The 
peculiarity of the quantization proposed is in its dynamical origin in the sense 
that the classical observables that are replaced by quantum operators are 
potential dependent, which is not the case for the canonical quantization. 

In Section 5 we give the expressions for the classical generators of the 
SO(4.2) algebra using the above six observables. This algebra includes the 
0(4) as its subalgebra. All the generators of the SO(4.2) are given the quantum 
definitions in accord with the correspondence principle. When doing so one 
comes upon an interesting prescription for ordering the basic operators within 
classical functions containing them. 

2. SO(4}-Algebra of  Poisson Brackets and Parametrization o f  the Phase Space 

In I we studied the general central problem with the ttamiltonian function 
of the form 

H = pi2/2 + V(r) (2.1) 

where Pi, r~ (i = 1, 2, 3) are canonical variables satisfying the Poisson-bracket 
relations 

{ri,p]}=6ii, {pi, pi}= {ri, ri)=O (2.2) 

p = (pZ)l/2, r = (r2) 1/2 and the potential V(r) must be sufficiently attractive 
to provide the domain of bounded motion. 

In I we built the nonconserving analog of the Runge-Lenz vector A (which 
we shall from now on call the precession vector): 

A = (2G -- L2) 1/2 cos ~ + - -  sin ~ (2.3) 
rL 

where 2 

~(rmin,  r )  = 
r 

rmin 

2 The square root  in the integrand is meant  to change its sign in the turning points so 
that it ~11 be the same as the sign of  (rp). 

f L - F {2 [ H -  V(r)] r 2 - L2}-1/2 dr = so - Ft (2.4) 
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In (2.3) and (2.4) L is the orbital momentum: 

L= [r x p] (2.5) 

G is the function of the energy H and the angular momentum squared L2: 

rmax 

G = 12 L + --Tr 2 [H - V(r)] -- -fi-] dr (2.6) 

rmin 

F=-~a/~L \~-ffl (2.7) 

and main and rma x are the turning (perigee and apogee) points of the trajectory 
with given H and L. In (2.4) ~p is obviously the angular position of the particle 
and t is the time. 

The precession vector (2.3)-(2.7) is defined uniquely [up to an arbitrary 
choice of the phase made in (2.3)] by the conditions that we now shall list. 
Along with the orbital momentum it satisfies the Poisson-bracket relations of the 
the 0(4) algebra: 

(Li, Lj} = ei/kLk (2.8) 

{L i, A/} = eiikA k (2.9) 

(Ai, Aj} = eijkL k (2.10) 

It lies in the plane of motion. This fact provides the vanishing of one out of 
the two Casimir invariants of the 0(4) 

G O = (AL) = 0 (2.11) 

The other Casimir invariant is just (2.6): 

G=½(L 2 +A2), (G, Li}= (G, Ai}=O (2.12) 

It conserves: 

(G, I/} = 0 (2.13) 

which implies via (2.12) and the relation {L, H} = 0 the conservation of the 
length of the precession vector. On the other hand its direction is not conserved: 

dA = F L x A (2.14) 
d t =  (A, H} L 

and the precession vector rotates with the constant angular velocity F(H, L) 
(2.7): 

A = A o cos F t -  (A o x L/L) sin Ft (2.15) 

F i s  so fixed by (2.7) and (2.6) that the trajectory of the particle is closed in 
the reference frame, rotating along with A around L. Indeed, substituting (2.7) 
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and (2.6) into (2.4) one sees that ~(rmin, rma_x ) = rr and thus the mutual orien- 
tation of  the vectors A and r [see (2.3)] repeats itself with the period 

r m a x  
2n ~G 

f 2 r { 2 [ H -  V(r)]r 2 - L2} -1/2 dr (2.16) 
T = (2G)l/~ 0H = rmin 

equal to the time distance between two successive perihelions on the given 
trajectory. Note that the disregard of  the rotation effect achieved by putting 
F = 0 in (2.4) converts (2.3) into Fradkin's (1967) piecewise conserving Runge- 
Lenz vector, which we studied earlier (Serebrennikov and Shabad, 1971). 

The last property of  the precession vector (2.3) is its vanishing for the 
circular trajectories (Bacry et al., 1966; Serebrennikov and Shabad, 1971) 
when mmin = rmax and G = ½L 2 from (2.6). 

These are the properties that fix the precession vector up to the phase. The 
phase arbitrariness reduces to different possible choices of  the lower integration 
limit r 1 in (2.4) rma x ) r  I ) r m i  n. Any admittable choice of  it does not affect 
the important relation (2.6), which expresses inexplicitly the Hamiltonian as a 
function of  L and G. With our choice r 1 = main the precession vector becomes 
parallel to r each time the latter points at a perihelion (see Serebrennikov and 
Shabad, 1976; and Serebrennikov et al., 1975 for discussion of  the arbitrary 
choice of  the phase). 

The rest of  this section is devoted to the parametrization of  the phase space 
in terms of  variables associated with the algebraic quantities. The variables to 
appear generalize the ones known in the Kepler problem (Bacry et al., 1966). 

Reversing relations (2.3) one gets 

r A A x L  
- -  = -- cos ~ - - -  sin ~ (2.17) 
r A AL  

p A A L 
- -  = -- cos (~ + o) - -- x -- sin (~ + o) (2.18) 
p A A L 

Equation (2.18) is obtained by calculating the vector product of  equation (2.17) 
and L. In (2.18) o is  the angle between r and P: 

(rp) L 
o(r) = arc c o s -  = arc sin (2.19) 

rp r [ 2 ( H -  V) l I/2 

Since ~ and o are periodic functions of  time, one may see from (2.17) and 
(2.18) that the parametrization of  the phase space can be achieved if one adds 
to the five variables Li, Ai ,  ~,~=tAiLi = 0 a sixth one defined modulo the 
period T (2.16). As such we may take the time t(r, main) measured beginning 
with the perigee point and up to the period T: 

t(rmi n , r) : 2 l / -  2V  - r2 ] dr (2.20) 
rmin 
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or, alternatively, the dimensionless variable 

21r 
~ =-f- t(rmin, r), 0~<~ <27r 
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(2.21) 

defined modulo 2r~. A trajectory is fixed if the orbital momentum L and the 
precession vector A are given at a time relating to any moment when r and A 
are parallel to each other, i.e., qs = 0 (or ~ = 2zm). Indeed, H is found by 
inverting (2.6) with the account of (2.12). The initial momentum length is 
determined as Po = [ 2 H -  2g(rmin) ] 1/2 = L/rmin ' ~o = 0, o 0 = rr/2 and ro 
and Po are given by (2.17) and (2.18). 

The sixth variable ~ (2.21) has the following Poisson-bracket relations with 
the remaining five variables (Serebrennikov et al., 1975): 

{L i, if} = 0 (2.22) 

{ ~, Ai/A}= 0 (2.23) 

(if, (2G) in} = 1 (2.24) 

It follows from this that 

{~,Ai}={~,~(2G_L2)I /2}=Ai  (2G) 1/2 
A (2G - L2) 1/2 (2.25) 

The most important thing about the relations (2.22)-(2.25) is that they are 
potential independent, just as relations (2.8)-(2.13) are. This enables us to 
extend some results known in the Kepler problem to the general case under 
consideration. In the paper by Smorodinsky and the present authors (Serebren- 
nikov et al., 1975), using (2.25), we integrate the 0(4) algebraic relations up to 
the global SO(4)-group action on the phase space following the treatment of the 
Kepler problem by Bacry et al. (1966). The classical generators of other alge- 
bras [O(4.1), 0(4.2), O(2.1)] are also based on the use of the variable ~ and 
its universal commutation relations (2.22)-(2.25). They wilt be given in 
Section 5. In the above-mentioned paper by Smorodinsky and us the geometri- 
cal sense of ~ was visualized. There we map the phase space onto the group in- 
variant manifold, whereupon the SO(4.1) group acts linearly via the canonical 
transformations performed by the Dirac brackets. This manifold is a product 
of two three-dimensional spheres in the mutually orthogonai four-dimensional 
"momentum" and "position" spaces with alternatabte mutually inverse radii. 
The Dirac-bracket Hamiltonian formalism in this manifold implies that the 
particle moves along a diametral'circle in the sphere, ~ being its angular position. 
This motion is uniform according to (2.21). The plane of the circle rotates with 
the constant angular velocity F (2.7). 

In the subsequent sections we shall exploit the universality of relations 
(2.8)-(2.13) and (2.22)-(2.24) for quantization. 
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3. Quantization: General Discussion 
Now we are in a position to give a more elaborate description of the quanti- 

zation procedure outlined in I, making use of the above algebraic results. Gen- 
erally the transition from the classical to quantum mechanics is performed in 
three steps. 

Step 1. Quantization. This is to select some six (2N, where N is the number 
of the degrees of freedom) independent observables that parametrize tile phase 
space, and replace them by some ("operator") quantities possessing a non- 
commutative multiplication law that is governed by a numerical parameter 
h (the Planck constant). This mutliplication taw requires that all the results of  
commutation among these six operators (divided by ih) should, in the h -+ 0 
limit, coincide with the results of  the corresponding Poisson-bracket calcula- 
tions. We shall refer to these six variables as the "basic" observables. Their 
choice is a matter of convenience or algebraic elegance of the above commuta- 
tion relations. 

Step 2. Specification o f  Quantum Dynamics. This is to postulate the Hamil- 
tonian as a function of the above six basic operators in such a way that in the 
h -+ 0 limit this function should coincide with the classical Hamiltonian when 
expressed as a function of the corresponding six c-numerical variables and that 
this operator should be Hermitian. 

Step 3. Definition o f  Various Observables. This is to establish the operator 
expressions for some important observables (besides the Hamiltonian) so that 
they could have necessary physical meaning. If  an observable must, owing to 
its physical sense, have a classical analog, the h -+ 0 limiting process should 
turn it into the corresponding classical function of the six basic variables. 
Besides the physical meaning some other, formal prescription may naturally 
arise within the general algebraic framework which rules the way the six basic 
operators should be ordered as arguments of the observable and thus define the 
operator corresponding to it. 

Now that we have formulated Steps 1, 2, and 3 we shall describe them for 
our "algebraic" quantization scheme as compared with the canonical quanti- 
zation. 

Within the usual canonical quantization scheme it is the Euclidean canoni- 
cally conjugated variables r, p that are taken for the six basic variables involved 
in Step 1 with the prescription that [r i, p]] = ihSii. On the contrary, within 
our scheme we recall that the six independent noncanonical variables Ai, Li, 
¢, (AL) = 0 parametrize the phase space, i.e., any observable may be expressed 
as a function of them, and we s u ~ e ~  taking them as the basic variables and 
replacing them by six operators Ai, Li, ~ ( A L  = 0), reproducing the algebraic 
relations (2.8)-(2.10), (2.22)-(2.24) in the sense of Step i. 

And what is more we find it useful to take for Ai, L i the exact generators of 
the 0(4) Lie algebra obeying the commutation relations 

[Li, Ljl = iheijkLk 
[Li, Aj] = iheijlcA k (3.1) 

D4i, Aj] = ihei]k£ k 
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which coincide after being multiplied by ih, with the Poisson-bracket relations 
(2.8)-(2.10) literally and not only in the h -~ 0 limit (thus exceeding the require- 
ment stated in Step 1). As for the other basic variable if, we replace it by an 
operator ~, described in agreement with Step 1 as follows. It commutes with 
L i [cf. (2.22)1 

[~, Li] = 0 (3.2) 

and with the operator A i * l/z[ serving as the quantum analog of the observable 
A j A  involved in (2.23) (the asterisk here denotes a special multiplication pre- 
scription to be specified below): 

[ ~ , A  i * (l/A)] = 0 (3.3) 

As for the last Poisson-bracket relation (2.24), it is reproduced in the h ~ 0 
limit by the commutator 

t +h2)1/21 ih [~' (2~ = 1 (3.4) 

The algebraic reason why we take (2G + h2) 1/2 instead of (2G) 1/z will become 
clear later when we see that the operator (2G + h2)  1/2 is the quantum analog 
for the Z 3 generator of the O(2.1) algebra [see (5.9) and (5.10) below]. 

The commutation relations (3.1)-(3.4) define the six basic operators A i, 
L i, ~ of Step 1. A matrix representation of these commutation relations will be 
described in Section 4. 

To avoid a possible misunderstanding, it is worth emphasizing here that the 
consistency of the quantization under consideration is not influenced by 
whether the commutation relations (3.1)-(3.4) may be induced by the replace- 
ment r i ~ ri, Pi -+ [)i (inherent in the canonical quantization) within the classi- 
cal expressions ofAi,  Li,  ~ in terms ofr i ,  Pi. One must realize that the operators 
:ti, £i, ~b are taken as primary quantities representing the given algebra of com- 
mutation relations. This question and the role the answer to it may play within 
the present approach wilt be discussed in the concluding section, Section 6. 

Now we pass to the discussion of the quantum definition of the energy 
(Step 2). 

Within the usual canonical quantization scheme it is usual to postulate that 
the quantum Hamiltonian is merely the same function of the operators f, [~ as 
the classical Hamiltonian was of r, p. This way of defining the quantum dynam- 
ics seems extremely natural 3 because the Hamiltonian (2.1) is a sum of the r- 
and p-dependent terms, and thus no question arises about the ordering of the 
noncommuting operators f, [~. On the contrary, within the present quantization 
scheme we suggest (I) taking for the quantum Hamittonian the same function 
H(G, L 2) as the one obtained by reversing equation (2.6): 

~(a, L 2)-~ ~I(~,L2)= ~ (3.5) 

3 This seems so natural that any other possibility is often overlooked altogether. 
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Again, since [~, L 2] = 0, no question arises of how to order the operators 
inside the function H. Since G and L 2 are Hermitian and the classical energy is 
a real function, the Hamiltonian (3.5) is Hermitian. This is an illustration of the 
fact that the different sets of  basic variables have ted to different natural ways 
of defining the observable (energy), because it must be clear that the Hamil- 
tonian (3.5) does differ from the Hamiltonian 

/.]tea n = ½p2 + V(~) (3.6) 

of the canonical quantization. They coincide only in the h -+ 0 limit. The fact 
that the use of different variables (even if they are connected by a canonical 
transformation) leads, generally, to different quantizations has been recognized 
as early as the very outset of the quantum mechanics (Tamm, t926). It is 
easily seen [I] that the spectrum of the Hamiltonian (3.5) is to be obtained 
by the substitution of the eigenvalues o f G  andL 2 [½h2(n 2 - 1), h2t(l + 1), 
respectively, where l = 0, 1 , 2 , . . . ,  n, n = 1, 2, 3 . . . ]  into (2.6). This is 
apparently the Bohr-Sommerfeld rule, leading to what is usually referred to as 
the quasiclassical spectrum. It coincides with the spectrum of (3.6) only in the 
h -+ 0 limit. 

One may ask whether there exists a physical criterion to favor one choice 
of quantum dynamics over another. It is widely recognized that no such criterion 
exists (cf. e.g., Berezin, 1975). A possible objection that "the experimentally 
measured spectra and scattering amplitudes perfectly agree with their values 
calculated according to the canonical quantization scheme with the Hamil- 
tonian (3.6)" is likely to relate only to the Coulomb case V(r) = 1/r. It is quite 
easy, however, to slightly modify our way of choosing the quantum Hamit- 
tonian (3.5) so as to provide the exact coincidence of the resulting spectrum 
with that of (3.6) for the hydrogen atom. To meet this "hydrogen correspon- 
dence principle" it is sufficient to replace 

2~ -~ 2G +h 2 (3.7) 

in (3.5), just as we did when passing from (2.24) to (3.4). This replacement 
creates the replacement n 2 - 1 -+ n 2 in the spectrum. In the hydrogen atom 
case n is the same as the principle quantum number, and this replacement is 
enough to convert the quasiclassical spectrum into the exact spectrum of 
(3.6). We shall see below that the same replacement (3.7) appears as one out of 
a set of  rules naturally arising within the present algebraic framework at Step 
3 for defining other observables proceeding from their classical expressions. 

4. Matrix Representat ion for  Basic Operators 

Now we proceed to develop the program of quantization sketched above. 
For the generators ~,, L of the 0(4) algebra obeying the relation (LA) = 0, 

which serves as a quantum generalization of equation (2.11), we take the 
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following matrix form (see, e.g., Gel'fand et al., 1958); 

(n'l'm' ILalnlm) = hm6nn'61l'6mm' 
(n'l'm'l£+_ = £1 + i£2[nlm) = hSnn'6U'Sm',m+_l [(/+ m + 1)(/¢- rn)] 1/~4'1) 

(n'l'm'lA alnlm} = #t~nn'~Jrn m' { o e ( l , / 7 " / ) ( / ' / 2  - -  12)1/26,,,t_ 1 
-- 0~(l + 1, m)ggi,,l+l [/72 -- (/+ 1) 2] 1/2} 

(n'l'rn'lft+lnlrn) = ih6nn'fm',m+ 1 {-+,GI(/, +m)(n 2 - 12)1/26l'1_1 
.T. 1~2(/, +_m)~l,l+ 1 [n2 _ (/+ 1)2] 1/2) 

d+_ =41 +-iA2 
(4.2) 

which they have in the degenerate representation characterized by the special 
eigenvalue of the second Casimir operator AL = 0. In (4.2) 

o~ l ,m)=[ ( I~ ) (~ f~m)]  1/2 

, 1 , , m ) = [ ( l - - 4 ~ ( 2 t 5 1 -  1)-] t/2 

~2( l 'm)=--[  (l+m+4(l+ 1)(l+m+l) 2 _ 1 2)] t/2 

(4.3) 

The matrices (4.1), (4.2) obey the commutation relations (3. t). The basis 
In, l, m) to which the matrices (4.1), (4.2) refer consists of vectors labeled 
by the integral numbers n, l, m, subject to the inequalities 

- l<.m<~t,  O<~l<n, n= 1 ,2 ,3  . . .  (4.4) 

They are eigenvalues of the Casimir operators of the SO(4) and its SO(3) and 
S0(2) subgroups: 

(n'l'm'l 2G Inlm) = (n 2 - 1 ) h 2 6 n n ' S l l ' ~ r n m  ' 

(n'l'm'l£Zlnlrn} = l(1 + 1)h25nn'Sll'fmm ' 

(n'l'rn'I£31nlm) = m h f n n ' 6 l l ' f r n  m '  

(4.5) 

(4.6) 

(4.7) 

Here 2~ = 4 2 + £2. We may define the operator ~ in the same representation 
through its exponential 

d_+ = exp (+i~) (4.8) 

(n', I', m't~-Intm) = ~n ' ,n_  l ~l' l~m'm (4.9) 

(n', l', m'l ~+inlm} = ~ n ' , n +  l ~ l ' l ~ m ' m  (4.10) 
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From (4.9) and (4.10) it follows khaLthe product e+e_ is equal to unity, as it 
should be from (4.8): e+e_ = e- i*e  i6 = 1. Also [~+, 0_] = 0. Matrices (4.9) 
and (4.10) obviously commute with (4.1) and thus (3.2) is guaranteed. The 
commutation relation 

[e+, (2G + h2) 1/2 ] = T-h0+ (4.11) 

follows from (4.9) and (4.10) and entails (3.4). Here 

(n'l'm'[ (2G + h2)l/2lnlm) = h n 6 n n ' 6 l t ' g m r  n ' (4.12) 

To achieve (3.3) with (4.8)-(4.10) it is necessary to define appropriately a 
quantum generalization of the unit vector AM. To this end note that the 
matrix ofA = (2G - L2) 1/2 is h In 2 - 1 - lq + 1)] 1/26nn'SU'Smm'. This 
square root differs from the n-containing square roots in (4.2) only by finite 
fixed additions to n 2 and l. For large quantum numbers n, l ~ ,~ these additions 
are negligible, and thus in the quasiclassical limit the square roots coincide. 
Therefore expressions (4.2) with the n-containing square roots canceled out of 
them may play part of the quantum generalization of A/A denoted as 

(n'l'm'lA3 * A-11nlm) = i~nn'~rnm' [&q, m)61',t-1 - o~q + 1, m)~l ' , l+l  ] 

(4.13) 

(n'l'm'lft+ *.4-11nlm) = iSnn 'Sm ' ,m+ 1 [+j31(l, + m)~ l , , l _  1 ~ ~2(l, + m)8l',l+1] 

These matrices obviously commute with (4.9)-(4.10),Aand (3.3) is thus satisfied. 
Now the explicit construction of the operators L, A, ~ is completed. We do 

not dwell on Step 2 of quantization because it was described fully enough in 
our previous work (Serebrennikov and Shabad, 1973) and in the previous 
section. We proceed directly to Step 3. 

5. Quantum Definition ofS0{4.2) Generators and Ordering Rules 

In this section we take the generators of O(2.1), O(4.1), and 0(4.2) as 
examples of quantum observables that may be defined in accordance with the 
correspondence principle using the matrix representations of the basic operators 
(4.1), (4.2), (4.8), and (4.9). In the H atom these noncompact groups were first 
considered by Barut (1964), Malkin and Man'ko (1965, 1966), Barut et al. 
(1966), and B6hm (1966). 

Let us write first the generators of the algebras SO(4.1), SO(4.2), and 
SO(2.1) operating in the phase space of the corresponding classical problem. 
The observables 

B = (2G) 1/2 c ° s ~ - ( 2 G ) l D s s i n ~  AL ] (5.1) 

B4 = A sin ~ (5.2) 
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obey the following Poisson-bracket relations: 

{Li, Bj} = eqgBg 

(A i, B]} = ~i]B4 

{Li, B4} = 0 

{Ai, B4)  = -B~ (5.3) 

{Bi, B I) = _ eiixL x 

(B4, Bi} = Ai  

which form the SO(4.1) algebra when combined with (2.8)-(2.t0). The 
generators (5. t) and (5.2), for the Kepler case, coincide with those built by 
Bacry (1966) with the special value of his arbitrary parameters. The choice 
of the parameters made is dictated by the considerations (to be published 
elsewhere) analogous in spirit to those which have led to the unique determi- 
nation of the precession vector (2.3). These considerations refer to a dynamical 
sense of the generators and to the requirement that they be members of the 
wider SO(4.2) algebra. The latter is formed if the following four generators 
Di, D 4 are added: 

D = - ( 2 G )  1/2 sin ff + cos ff - - ~ /  (5.4) 

D 4 =A cos ~ (5.5) 

which obey the same bracket relations (5.3) as the B's do and commute with 
the latter in the following way: 

{B i, D]} = 8ijD 5 , {B4, D4} = Ds 
(5.6) 

{B 4, Dj} = {Bj, D4} = 0 

The observables (2.3), (2.5), (5.1), (5.2), (5.4), and (5.5) along with the 
observable 

D s = (2G) 1/2 (5.7) 

obeying the relations 

{Li, Ds}  = (Ai,  D s } = O  

{04, Ds } = -B4 ,  {B4, Ds } = D4 (5.8) 

(Di, D s } = - B  i, {Bi, D s } = D  i 

form the SO(4.2) algebra of the Poisson brackets. The three observables B4, 
D4, and D s form the SO(2.1) algebra among themselves: 

{Z3, Z+)= - i Z +  

(Z3, Z_} = iZ_ (5.9) 

{Z+, Z_} = iZ 3 
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where we have introduced the designations 

Z a = D s = (2G) 1/2 
(5.10) 

The double-asterisk ordering is defined as follows (fis an arbitrary function of 
operators): 

(n ' l 'm' l*  f(Z32,  e i~ , e - i~)~ , ln lm)  = (n' l 'm' lJ(nn' ,  e i?¢ ,e - i~  [nlm)(5.14) 

Its effect is to "average" the diagonal operator 232 = h2n2~nn'~lf  between 
the initial and final states. In accordance with the definition (5.14) the 
matrices of (5.13) coincide precisely with (5.11). For the more special case 
of the product f (Z32)e  +-i~ (which is the only case we will need) the double- 
asterisk ordering (5.14) reduces to the Weyl symmetrization, 

1 ~ (2G L2) I/2 e +-i~ Z+ = ~ (B 4 + iD4) = T- V ~  

Now we are in a position to give quantum definitions to the generators (5.1), 
(5.2), (5.4), (5;5), and (5.7). We start with the O(2.1) algebra (5.9). Consider 
the operators Z+ given in the representation of the previous section by the 
matrices 

( n ' I ' m ' 1 2 + t n l m ) = ( - i h / x / ~ [ ( n - t ) q + n +  1)11/2~ ~ Wn',n+l Ull'~,rnm ' (5.11) 
(n ' l 'm ' lZ_ ln lm)  = (ih/x/~ [(n + l)(n - I - 1)] 1/26n' n_16tt'6,n m' 

which along with the operator 2 3 = [2G + h 2 ] 1/2 (4.12) provide the Lie 
algebra O(2.1): 

[23, 2+] = +h2+_ 
(5.12) 

[2+, 2_] = -h23 

Just as we did for ~, *A -1 , we may easily make sure by substituting (4.9) and 
(4.10) into (5.10) that the latter coincides with (4.12) and (5.11 ) within quasi- 
classical accuracy. Therefore (4.12) and (5.11) may be regarded as appropriate 
quantum definition of the observables (5.10), which in the quantum case are 
generators of the S0(2 .1)  group as equations (5.10) were in the classical case. 

On the other hand we can abstract out from this example a rule which may 
be useful for defining other observables as well. To get (4.12) and (5.11) from 
(5.10) we must first apply to the latter the replacement (3.7). This immediately 
turns Z 3 into 2 3 (4.12). After (3.7) is adopted and (4.9) and (4.10) are 
substituted into Z_+ (5.10) we prescribe a special law denoted by the double 
asterisks for the two factors in Z_+ 

~ .  , *  ~ 2 L2)l/2e+-i~ (5.13) (i/v%,(z3- 
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[here J~ (a), l~z (/3) are Fourier transforms of fa  (23) and fz (~), respectively] 
after the extra replacement 232 -~ 232 - ¼h 2 is made: 

^ 

2+_ = -v(i/v  ) w [ ( &  5 - £ 5  _ ¼h2)1,5 ] 

= ; ( / / , / 2 ) [ ( 2 3  ¥ ½h) 5 - Z  5 -  h:l 1/Se+-i~ (5.16) 

= T.(i/v~)e+-i~ [(2:3 _+ ½h)2 _ £2 _ ¼h z ] 1/2 

In deriving (5.16) the property (4.t  1) o fe  ±i~ to be the shift operator was 
used. Equation (5.16) has the matrix form (5.11). Alternatively, one might 
obtain (5.16) by postulating the replacements (3.7) and L 2 _+/~ 2 + ¼h 2 and 
the Weyl symmetrization in Z_+ (5.10). Of course, the additional repla¢ements 
232 _.~ 232 __ ¼h2 or L5 _+ L 2 + ¼h 2 are not necessary as far as one wants to 
provide the commutation relations (5.12)~ With the ¼h 2 term omitted from 
(5.16), however, the Casimir invariant Z a - Z_Z+ - Z+Z_ of the O(2.1) 
algebra would be equal t o L  2 - -,~h 5 and not t o L  2 as it is for (5 . t6)  or (5.11). 

Now that the quantum generators 2+ ,  2 a of the SO(2.1) group are defined 
with their classical limit coinciding with the ciassical functions (5.10) of A, 
L. and ~ the definition of the generators of the SO(4.2) may be given in the 
following way. 4 First we identify 2+ = (1/X/~)(/)4 -7 ib4)  (5.11), Ds = 23 = 
(2G + h2) 1/2 (4.12).The generatorsI) and g are defined as the commutators: 

= [/34, -~l (1lib), B = [B4, ~ (1/ih). The corresponding matrices for B and 
D obtained by the commutations coincide with the standard matrices for the 
generators of the 0(4.2) algebra belonging to the continuous series of the 
unitary irreducible representation of this group (see, e.g., B6hm, 1966, for 
B's: put a = 0 in B6hm's expressions) 

(n' l 'm'tBalnlm) = -½ih6m'm £6f,  l+16n',n+lO~(l + i,  m)[(n + l + 1)(n + l + 2)1 1/2 

-- 5 , ' , l _16n ' , n+ la ( l  , m)[(n - l)(n - I + 1)] 1/2 
(5.17) 

+ 8f , l+lgn 'n_la(1  + 1, m)[(n - l - 1)(n - l - 2)] t/5 

- -  ~ t ' , l _ 1 6 n ' , n _ l O ~ ( l ,  m ) [ ( n  + / ) ( n  + l - I ) ]  1/2} 
The matrix elements of/)+ = [/)4,/[+-] (I/ ih) are obtained from (5.17) by the 
formal replacement, as in (4.2), 

~ m m ' - - - ~ m ' , r n ± l  a ( l , m ) ~  +/31q, +-rn) o~(l + 1 , m ) ~  +(32q,+m) 

(5 . t8)  
where a and t31, 2 are given by (4.3). 

, ,  f " 1 , + (n l m lDalnlm)=-~hSm'm{-6 , , l+16n, ,n+,a( l  i, m)[(n + l+  1) (n+t+2) ]  1/2 

+ 8f, t_16n, n+ia(l ,m)[(n - l)(n - l+ 1)] ~/2 

+6t',l+lgn'n_lO~(l+ 1,m)[(n - l -  1 ) ( n -  l -  2)] 1/2 

- 6 f ,  l _ l S n , , n _ l a ( l , m ) [ ( n + l ) ( n + l -  1)] 1/2} (5.19) 

4 For the Coulomb case this group was discovered by Malkin and Man'ko (1965, 1966). 
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The matrix elements of/)_+ = [/)4, ~'{±] (t//h) are obtained from this again by 
the formal substitution (5.18). 

The coincidence, in the h -+ 0 limit, of these matrices for/)3,  D±,/93, and 
/9± with those that may be obtained from D3, D+, B 3, and Be, (5.4), (5.1)by 
substitution of (4.1), (4.2), (4.9), and (4.10) is provided by the fact that in this 
limit every commutator between two operators, say X and Y, divided over ih 
should coincide with the result of the Poisson-bracket calculation {X, Y} once 
the classical quantities X, Y are classical limits of X and I ~, respectively. This 
property of the quantum multiplication law necessarily imposed on the basic 
operators Ai, Li, ~ (see Section 3) was seen in Section 4 to be fulfilled for 
their matrix representation considered. Thus it also holds for all the other 
observables (including/)4,/)4) that are functions of them. The coincidence 
in the classical (n >> 1) limit of t~, I) with their classical expressions may be 
also verified directly. 

6. Concluding Remarks 

To judge at which step the quantization here described becomes non- 
equivalent with the canonical one, it is important to answer the question 
of whether the substitution of the operators, subject to the commutation 
relations (3.1)-(3.4), for the basic observables A, L, and ~ may be induced by 
the canonical procedure of replacing r and p by the operators obeying the 
relation [Pi, D]] = ihSq inside the classical functions (2.5), (2.3), and (2.21). 
This possibility is obvious for the angular momentum subalgebra in (3.1) pro- 
duced directly by tile expression L i = ei]kPiPk. For the Coulomb case the Weyl 
symmetrization between f and 15 within the expression of the Runge-Lenz vec- 
tor is known to lead to (3.1). In the general case no such procedure is known. 
At present we are able to prove the following statement, which relates to the 
harmonic oscillator (to be published elsewhere): Take the eigenstates of the 
Hamiltonian (3.6) with V(r) = w2r2 as the vectors In, l, m)  of Sections 4 and 
5 with l and m recognized as the orbital and magnetic quantum numbers, 
respectively, and n as the sum n = n r + l + 1, where nr is the radial quantum 
number. Then calculate the matrix elements of the canonical variables 
(n'l 'm'lf ,  15In, l, m)  and substitute the result into (2.3). The resulting matrix 
expressions coincide within the accuracy o fh  with the matrices (4.2). This 
implies that in this particular case quantum generators of the SO(4) algebra 
do exist that differ from the arbitrarily ordered corresponding classical func- 
tions of the operators of canonical position and momentum no more than 
within the accuracy of h. We believe that this result must hold for the general 
potential as well. We must emphasize once again, however, that no matter 
how the question under discussion is answered, the validity of the construc- 
tion of the body of the paper is not affected. 

Note added in proof. The question asked in Section 6 may be answered in 
the positive for the general potential. 

Proof: In the h -~ 0 limit quantum operators turn into classical expressions 
whose Poisson bracket relations are the same as the commutation relations 
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of  their operator prototypes. This applies to the quantum generators of  SO(4), 
defined as operators whose matrix elements with respect to the eigenstates 
of the canonical Hamiltonian (3.6), labeled as in Section 6, are given by (4.1), 
(4.2). Expressions (2.3), (2.4), (2.7), with (2.6) yet unknown, are the most 
general expressions satisfying (2.5) and the Poisson bracket relations of  the 
SO(4) algebra shown in I. The basic vectors In, L m)  correspond to the energy 
eigenvalues H(n, I) = H(nr + l + 1, t). 

By going to the Bohr-Sommerfeld limit of  this expression and expressing 
n in terms of  G with the help of  (4.12), one obtains (2.6). Thus our precession 
vector [(2.3), (2.4), and (2.6)] is the classical limit of the quantum SO(4) 
generators created within the canonical quantization scheme. The analogous 
statement holds for f .  Therefore the present quantization differs from the 
canonical one only as far as Steps 2 and 3 are concerned. Details o f  the iimit- 
ing transition will be traced in a separate publication. 
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